Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 6868, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477739

RESUMO

Until recently, Shigella and enteroinvasive Escherichia coli were thought to be primate-restricted pathogens. The base of their pathogenicity is the type 3 secretion system (T3SS) encoded by the pINV virulence plasmid, which facilitates host cell invasion and subsequent proliferation. A large family of T3SS effectors, E3 ubiquitin-ligases encoded by the ipaH genes, have a key role in the Shigella pathogenicity through the modulation of cellular ubiquitination that degrades host proteins. However, recent genomic studies identified ipaH genes in the genomes of Escherichia marmotae, a potential marmot pathogen, and an E. coli extracted from fecal samples of bovine calves, suggesting that non-human hosts may also be infected by these strains, potentially pathogenic to humans. We performed a comparative genomic study of the functional repertoires in the ipaH gene family in Shigella and enteroinvasive Escherichia from human and predicted non-human hosts. We found that fewer than half of Shigella genomes had a complete set of ipaH genes, with frequent gene losses and duplications that were not consistent with the species tree and nomenclature. Non-human host IpaH proteins had a diverse set of substrate-binding domains and, in contrast to the Shigella proteins, two variants of the NEL C-terminal domain. Inconsistencies between strains phylogeny and composition of effectors indicate horizontal gene transfer between E. coli adapted to different hosts. These results provide a framework for understanding of ipaH-mediated host-pathogens interactions and suggest a need for a genomic study of fecal samples from diseased animals.


Assuntos
Shigella , Ubiquitina , Animais , Bovinos , Cromossomos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ubiquitina/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
Int J Biol Macromol ; 184: 760-767, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34175341

RESUMO

The 2-TM-GxN family of membrane proteins is widespread in prokaryotes and plays an important role in transport of divalent cations. The canonical signature motif, which is also a selectivity filter, has a composition of Gly-Met-Asn. Some members though deviate from this composition, however no data are available as to whether this has any functional implications. Here we report the functional and structural analysis of CmaX protein from a pathogenic Pseudomonas aeruginosa bacterium, which has a Gly-Ile-Asn signature motif. CmaX readily transports Zn2+, Mg2+, Cd2+, Ni2+ and Co2+ ions, but it does not utilize proton-symport as does ZntB from Escherichia coli. Together with the bioinformatics analysis, our data suggest that deviations from the canonical signature motif do not reveal any changes in substrate selectivity or transport and easily alter in course of evolution.


Assuntos
Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Clonagem Molecular/métodos , Pseudomonas aeruginosa/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Proteínas de Transporte de Cátions/genética , Microscopia Crioeletrônica , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Pseudomonas aeruginosa/genética
3.
Front Microbiol ; 12: 628622, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912145

RESUMO

Shigella are pathogens originating within the Escherichia lineage but frequently classified as a separate genus. Shigella genomes contain numerous insertion sequences (ISs) that lead to pseudogenisation of affected genes and an increase of non-homologous recombination. Here, we study 414 genomes of E. coli and Shigella strains to assess the contribution of genomic rearrangements to Shigella evolution. We found that Shigella experienced exceptionally high rates of intragenomic rearrangements and had a decreased rate of homologous recombination compared to pathogenic and non-pathogenic E. coli. The high rearrangement rate resulted in independent disruption of syntenic regions and parallel rearrangements in different Shigella lineages. Specifically, we identified two types of chromosomally encoded E3 ubiquitin-protein ligases acquired independently by all Shigella strains that also showed a high level of sequence conservation in the promoter and further in the 5'-intergenic region. In the only available enteroinvasive E. coli (EIEC) strain, which is a pathogenic E. coli with a phenotype intermediate between Shigella and non-pathogenic E. coli, we found a rate of genome rearrangements comparable to those in other E. coli and no functional copies of the two Shigella-specific E3 ubiquitin ligases. These data indicate that the accumulation of ISs influenced many aspects of genome evolution and played an important role in the evolution of intracellular pathogens. Our research demonstrates the power of comparative genomics-based on synteny block composition and an important role of non-coding regions in the evolution of genomic islands.

4.
PeerJ ; 6: e4545, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29607260

RESUMO

Genome rearrangements have played an important role in the evolution of Yersinia pestis from its progenitor Yersinia pseudotuberculosis. Traditional phylogenetic trees for Y. pestis based on sequence comparison have short internal branches and low bootstrap supports as only a small number of nucleotide substitutions have occurred. On the other hand, even a small number of genome rearrangements may resolve topological ambiguities in a phylogenetic tree. We reconstructed phylogenetic trees based on genome rearrangements using several popular approaches such as Maximum likelihood for Gene Order and the Bayesian model of genome rearrangements by inversions. We also reconciled phylogenetic trees for each of the three CRISPR loci to obtain an integrated scenario of the CRISPR cassette evolution. Analysis of contradictions between the obtained evolutionary trees yielded numerous parallel inversions and gain/loss events. Our data indicate that an integrated analysis of sequence-based and inversion-based trees enhances the resolution of phylogenetic reconstruction. In contrast, reconstructions of strain relationships based on solely CRISPR loci may not be reliable, as the history is obscured by large deletions, obliterating the order of spacer gains. Similarly, numerous parallel gene losses preclude reconstruction of phylogeny based on gene content.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...